首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   20篇
  国内免费   2篇
测绘学   9篇
大气科学   22篇
地球物理   59篇
地质学   131篇
海洋学   14篇
天文学   27篇
自然地理   18篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   15篇
  2018年   12篇
  2017年   16篇
  2016年   19篇
  2015年   14篇
  2014年   13篇
  2013年   19篇
  2012年   11篇
  2011年   29篇
  2010年   29篇
  2009年   17篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   3篇
  1992年   1篇
  1986年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有280条查询结果,搜索用时 22 毫秒
81.
Landslides - The mass transfer mechanisms in landslides are complex to monitor because of their suddenness and spatial coverage. The active clayey Harmalière landslide, located 30 km south of...  相似文献   
82.
83.
Rapid population growth in sub-Saharan West Africa and related cropland expansion were shown in some places to have increased focused recharge through ponds, raising the water table. To estimate changes in diffuse recharge, the water content and matric potential were monitored during 2009 and 2010, and modeling was performed using the Hydrus-1D code for two field sites in southwest Niger: (1) fallow land and (2) rainfed millet cropland. Monitoring results of the upper 10 m showed increased water content and matric potential to greater depth under rainfed cropland (>2.5 m) than under fallow land (≤1.0 m). Model simulations indicate that conversion from fallow land to rainfed cropland (1) increases vadose-zone water storage and (2) should increase drainage flux (~25 mm year?1) at 10-m depth after a 30–60 year lag. Therefore, observed regional increases in groundwater storage may increasingly result from diffuse recharge, which could compensate, at least in part, groundwater withdrawal due to observed expansion in irrigated surfaces; and hence, contribute to mitigate food crises in the Sahel.  相似文献   
84.
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.  相似文献   
85.
Mineralization of groundwater in volcanic aquifers is partly acquired through silicates weathering. This alteration depends on the dissolution of atmospheric, biogenic, or mantellic gaseous CO2 whose contributions may depend on substratum geology, surface features, and lava flow hydrological functionings. Investigations of $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC (total dissolved inorganic carbon) on various spatiotemporal scales in the unsaturated and saturated zones of volcanic flows of the Argnat basin (French Massif Central) have been carried out to identify the carbon sources in the system. Mantellic sources are related to faults promoting CO2 uplift from the mantle to the saturated zone. The contribution of this source is counterbalanced by infiltration of water through the unsaturated zone, accompanied by dissolution of soil CO2 or even atmospheric CO2 during cold periods. Monitoring and modeling of δ13CTDIC in the unsaturated zone shows that both $ {\text{P}}_{{{\text{CO}}_{ 2} {\text{eq}}}} $ and δ13CTDIC are controlled by air temperature which influences soil respiration and soil-atmosphere CO2 exchanges. The internal geometry of volcanic lava flows controls water patterns from the unsaturated zone to saturated zone and thus may explain δ13C heterogeneity in the saturated zone at the basin scale.  相似文献   
86.
We investigate impact basin relaxation on Iapetus by combining a 3D thermal evolution model (Robuchon, G., Choblet, G., Tobie, G., Cadek, O., Sotin, C., Grasset, O. [2010]. Icarus 207, 959-971) with a spherical axisymmetric viscoelastic relaxation code (Zhong, S., Paulson, A., Wahr, J. [2003]. Geophys. J. Int. 155, 679-695). Due to the progressive cooling of Iapetus, younger basins relax less than older basins. For an ice reference viscosity of 1014 Pa s, an 800 km diameter basin relaxes by 30% if it formed in the first 50 Myr but by 10% if it formed at 1.2 Gyr. Bigger basins relax more rapidly than smaller ones, because the inferred thickness of the ice shell exceeds the diameter of all but the largest basins considered. Stereo topography shows that all basins 600 km in diameter or smaller are relaxed by 25% or less. Our model can match the relaxation of all the basins considered, within error, by assuming a single basin formation age (4.36 Ga for our nominal viscosity). This result is consistent with crater counts, which show no detectable age variation between the basins examined.  相似文献   
87.
In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions.Using a Beer–Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer.  相似文献   
88.
Stochastic point processes for rainfall are known to be able to preserve the temporal variability of rainfall on several levels of aggregation (e.g. hourly, daily), especially when the cluster approach is used. One major assumption in most of the applications todate is the stationarity of the rainfall properties in time, which must be reconsidered under a climate change hypothesis. Here, we propose new theoretical developments of a Poisson-based model with cluster, namely the Neyman–Scott Rectangular Pulses Model, which treats storm frequency as a nonstationary function. In this paper, storm frequency is modelled as a linear function of time in order to reproduce an increase (or decrease) of the mean annual precipitation. The basic theory is reconsidered and the moments are derived up to the third order. Then, a calibration method based on the generalized method of moments is proposed and discussed. An application to a rainfall time series from Uccle illustrates how this model can reproduce a trend for the average rainfall. This work opens new avenues for future developments on transient stochastic rainfall models and highlights the major challenges linked to this approach.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号